Знаки логических операций в информатике

Конъюнкция или логическое умножение (в теории множеств – это пересечение)

Конъюнкция является сложным логическим выражением, которое истинно в том и только том случае, когда оба простых выражения являются истинными. Такая ситуация возможно лишь в единственном случае, во всех остальных случаях конъюнкция ложна.

Обозначение: &, $wedge$, $cdot$.

Таблица истинности для конъюнкции

  1. Если хотя бы одно из подвыражений конъюнкции ложно на некотором наборе значений переменных, то и вся конъюнкция будет ложной для этого набора значений.
  2. Если все выражения конъюнкции истинны на некотором наборе значений переменных, то и вся конъюнкция тоже будет истинна.
  3. Значение всей конъюнкции сложного выражения не зависит от порядка записи подвыражений, к которым она применяется (как в математике умножение).

Дизъюнкция или логическое сложение (в теории множеств это объединение)

Дизъюнкция является сложным логическим выражением, которое истинно практически всегда, за исключением, когда все выражения ложны.

Попробуй обратиться за помощью к преподавателям

Таблица истинности для дизъюнкции

  1. Если хотя бы одно из подвыражений дизъюнкции истинно на некотором наборе значений переменных, то и вся дизъюнкция принимает истинное значение для данного набора подвыражений.
  2. Если все выражения из некоторого списка дизъюнкции ложны на некотором наборе значений переменных, то и вся дизъюнкция этих выражений тоже ложна.
  3. Значение всей дизъюнкции не зависит от порядка записи подвыражений (как в математике – сложение).

Отрицание, логическое отрицание или инверсия (в теории множеств это отрицание)

Отрицание — означает, что к исходному логическому выражению добавляется частица НЕ или слова НЕВЕРНО, ЧТО и в итоге получаем, что если исходное выражение истинно, то отрицание исходного – будет ложно и наоборот, если исходное выражение ложно, то его отрицание будет истинно.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Обозначения: не $A$, $ar$, $¬A$.

Таблица истинности для инверсии

«Двойное отрицание» $¬¬A$ является следствием суждения $A$, то есть имеет место тавтология в формальной логике и равно самому значению в булевой логике.

Импликация или логическое следование

Импликация — это сложное логическое выражение, которое истинно во всех случаях, кроме как из истины следует ложь. То есть, данная логическая операция связывает два простых логических выражения, из которых первое является условием ($A$), а второе ($A$) является следствием условия ($A$).

Обозначения: $ o$, $Rightarrow$.

Таблица истинности для импликации

  1. $A o B = ¬A vee B$.
  2. Импликация $A o B$ ложна, если $A=1$ и $B=0$.
  3. Если $A=0$, то импликация $A o B$ истинна при любом значении $B$, (из лжи может следовать истинна).

Эквивалентность или логическая равнозначность

Эквивалентность — это сложное логическое выражение, которое истинно на равных значениях переменных $A$ и $B$.

Обозначения: $leftrightarrow$, $Leftrightarrow$, $equiv$.

Таблица истинности для эквивалентности

Строгая дизъюнкция или сложение по модулю 2 ( в теории множеств это объединение двух множеств без их пересечения)

Строгая дизъюнкция истинна, если значения аргументов не равны.

Для функции трёх и более переменных результат выполнения операции будет истинным только тогда, когда количество аргументов равных $1$, составляющих текущий набор — нечетное. Такая операция естественным образом возникает в кольце вычетов по модулю 2, откуда и происходит название операции.

Обозначения: $A oplus B$ (в языках программирования), $A≠B$, $A wedge B$ (в языках программирования).

Таблица истинности для операции сложения по модулю два

Свойства строгой дизъюнкции:

Стрелка Пирса

Бинарная логическая операция, булева функция над двумя переменными. Названа в честь Чарльза Пирса и введена в алгебру логики в $1880—1881$ гг.

Обозначения: $downarrow$ , ИЛИ-НЕ

Таблица истинности для стрелки Пирса

Стрелка Пирса, как и конъюнкция, дизъюнкция, отрицание, образует базис для булевых функций двух переменных. При помощи стрелки Пирса, можно построить все остальные логические операции, например:

Читайте также:  Имитаторы звука своими руками

$X downarrow X = ¬X$— отрицание

$(X downarrow Y) downarrow (X downarrow Y) equiv X vee Y$ — дизъюнкция

$(X downarrow X) downarrow (Y downarrow Y) equiv X wedge Y$ — конъюнкция

$((X downarrow X) downarrow Y) downarrow ((X downarrow X) downarrow Y) = X o Y$ — импликация

В электронике стрелка Пирса представлена в виде элемента, который носит название «операция 2ИЛИ-НЕ» (2-in NОR).

Штрих Шеффера

Булева функция двух переменных или бинарная логическая операция. Введена в рассмотрение Генри Шеффером в 1913 г.

Обозначения: $|$, эквивалентно операции И-НЕ.

Таблицей истинности для функции штрих Шеффера

Штрих Шеффера образует базис для всех булевых функций двух переменных. Применяя штрих Шеффера можно построить остальные операции, например,

Для электроники это означает, что реализация схем возможна с использованием одного типового элемента (правда это дорогостоящий элемент).

Порядок выполнения логических операций в сложном логическом выражении

  1. Инверсия(отрицание);
  2. Конъюнкция (логическое умножение);
  3. Дизъюнкция и строгая дизъюнкция (логическое сложение);
  4. Импликация (следствие);
  5. Эквивалентность (тождество).

Для того чтобы изменить указанный порядок выполнения логических операций, необходимо использовать скобки.

Общие свойства

Для набора из $n$ логических переменных существует ровно $2^n$ различных значений. Таблица истинности для логического выражения от $n$ переменных содержит $n+1$ столбец и $2^n$ строк.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Методы вычисления

Логика выражений необходима для строения составных высказываний. Они состоят из простых выражений за счет соединения их друг с другом при помощи операций логики «не», «и», «или». Для определения ложности либо истинности рассматриваются составные символы.

При передачи данных через онлайн-сервисы и с помощью ЭВМ операторы используют специализированные термины. Под высказываниями подразумеваются повествовательные предложения, которые могут быть истинными (1) либо ложными (0). Операция — мыслительное действие, в результате которого изменяется объём либо содержание, образуется новое понятие.

Элементы выражения, утверждения либо записи:

С учётом значений переменных выражение может иметь одно из следующих значений: истина либо ложь. Составные выражения строятся из простых при помощи логических действий, которые соответствуют связкам, употребляемым в естественном языке. Пример: значение инверсии — «неверно, что», а конъюнкции — «и», «но», «хотя». Существует определённый порядок выполнения логических операций в информатике:

  1. отрицание (инверсия);
  2. умножение (конъюнкция);
  3. сложное и простое сложение (дизъюнкция);
  4. следствие (импликация);
  5. тождество (эквивалентность).

Для изменения последовательности, указанной в схеме, применяются скобки. К сложным функциям относится конъюнкция.

Согласно формуле, истинно в том и только в том случае, если 2 простых высказывания являются истинными. Подобное значение возможно в одном случае, а во всех других оно ложное. Обозначение конъюнкции: &, ∧.

Описание операций:

  • = «основателем высшей математики является Буль»;
  • = «графические исследования Шеннона используются в алгебре».

Выражение считается истинным, когда одновременно истинны два высказывания. Базовые значения исходных данных указываются в специальной таблице истинности логических операций. Двоичные числа, которые соответствуют высказываниям, располагаются в схеме в возрастающем порядке. В последнем столбике записывается результат выполненных операций для конкретных операндов (аргумент). Свойства логического умножения:

  • если один элемент ложный, тогда вся конъюнкция ложная для конкретного набора значений;
  • если выражения истинны, тогда всё уравнение будет истинной;
  • результат всей конъюнкции сложного высказывания не зависит от порядка следования элементов.

Логическое сложение

В информатике часто используется такой вид операции, как дизъюнкция. Случай, когда нужно исключать истинное сложение — все подвыражения ложны. Символы, которые используются для обозначения операции: +, ∨. Базис свойств сложного сложения:

  • любое подвыражение истинно, значит, вся дизъюнкция будет истинной;
  • если все определения из списка ложны, тогда вся дизъюнкция ложна.

Результат не зависит от порядка расположения знаков логической операции. Для решения дизъюнкции используются 2 выражения. Первое: = «Лейбниц применил в информатике математические символы», второе: = «Лейбниц основал бинарную арифметику».

В результате преобразования описанных выражений получается следующий результат: «Идея использования в информатике математических символов принадлежит Лейбницу, или он основал бинарную арифметику».

Сложное высказывание считается ложным, если одновременно неверны два первоначальных понятия. В основе записи дизъюнкции находятся нули и единицы.

Использование частиц

Инверсия — ещё одна операция, которую применяют ежедневно операторы ЭВМ для обработки и передачи данных. Принцип преобразования отрицания: каждому тезису ставится новое высказывание, противоположное первоначальному. Инверсия либо отрицание означает, что к исходному выражению приставляется частица «не» либо слово «неверно», «что». Расшифровка логической операции:

  • если первоначальное выражение является истиной, тогда его отрицание будет ложным;
  • если исходное высказывание ложное, тогда его отрицание будет истинным.
Читайте также:  Интерскол 160 инвертор отзывы

Чтобы править запись инверсии, применяются специальные знаки логической операции: «НЕ», «А», «¬А». Для логического отрицания характерны некоторые свойства. Считается, что «двойное отрицание» (обозначается «¬ ¬A») — следствие суждения А. Оно указывает на тавтологию логического формата и равняется значению в булевой логистике.

Высказывание «Я имею компьютер» имеет отрицание «Неверно, что я имею компьютер» либо «У меня нет компьютера». Выражение «Я не знаю японский язык» имеет отрицание «Неверно, что я не знаю японский язык» либо «Я знаю японский язык». Другой пример инверсии: «Все ученицы 8 класса — отличницы». Отрицание можно составить следующим образом:

  • «неверно, что все ученицы 8 класса — отличницы»;
  • «не все ученицы 8 класса — отличницы».

Когда строится отрицание к простому высказыванию, либо применяется оборот из русского языка «неверно, что…», либо отрицание формируется для сказуемого, тогда к глаголу рекомендуется добавить частицу «не». Логическое умножение с символом «и» должно выполняться раньше сложения с «или».

Сложную операцию можно записать в виде выражения, в состав которого входят переменные, знаки и скобки. При этом необходимо соблюдать некоторую последовательность действий:

Для изменения порядка выполнения действия расставляются скобки. В конце выполненных операций проводится импликация. Это сложное выражение считается истинным в любом случае, исключение — из истины следует ложь. Операция позволяет связать 2 простых высказывания, из которых первое считается условием, а второе — следствием.

Для вычисления результата составного высказывания достаточно выяснить только значение 1 составного элемента. Если в схеме с «и» используется ложное простое высказывание, то результат составного будет ложным. Когда в составном предложении с «или» значения одного простого символа истинное, тогда результат всего выражения будет истинным.

Закон Пирса

В информатике используется булевая функция, названная в честь Пирса. Впервые стрелку Пирса ввели ученые в алгебру в 1880 г. г. Она обозначается следующим образом: ↓, «или-не». Свойства функции:

  • формирование базиса для булевых функций 2-х неизвестных;
  • построение других операций (отрицание: X↓X=¬X).

В информатике выражение представлено в виде элемента, который называется «операция 2ИЛИ-НЕ». Другая функция, которая часто применяется в электронике, называется штрихом Шеффера. Операция состоит из 2-х неизвестных либо бинарного элемента. Штрих используется с 1913 года. Он обозначается как |, что эквивалентно «и-не».

Его главные свойства:

  • основа функции, состоящей из 2-х переменных;
  • возможность построения иных высказываний (X ∣ X=¬X — отрицание).

В информатике операция используется с целью реализации схем путём применения типового, но дорогостоящего элемента. Из всех существующих логических операций приоритет отдаётся инверсии. Чтобы выразить логические сущности, операторы применяют разные символы. Специалисты решают задачи в уме, передавая через сервисы только конечный результат. Для обработки данных они используют схемы всех высказываний. Вычисления производятся быстрее на ЭВМ, компьютерах с мощным жёстким диском.

Каждого, кто начинает изучать информатику, учат двоичной системе исчисления. Именно она используется для вычисления логических операций. Рассмотрим ниже все самые элементарные логические операции в информатике. Ведь если задуматься, именно они используются при создании логики вычислительных машин и приборов.

Отрицание

Перед тем как начать подробно рассматривать конкретные примеры, перечислим основные логические операции в информатике:

Также перед началом изучения логических операций стоит сказать, что в информатике ложь обозначается "0", а правда "1".

Для каждого действия, как и в обычной математике, используются следующие знаки логических операций в информатике: ¬, v, &, ->.

Каждое действие возможно описать либо цифрами 1/0, либо просто логическими выражениями. Начнём рассмотрение математической логики с простейшей операции, использующей всего одну переменную.

Логическое отрицание — операция инверсии. Суть заключается в том, что если исходное выражение — истина, то результат инверсии — ложь. И наоборот, если исходное выражение — ложь, то результатом инверсии станет — правда.

При записи этого выражения используется следующее обозначение "¬A".

Приведём таблицу истинности — схему, которая показывает все возможные результаты операции при любых исходных данных.

Таблица истинности для инверсии

А х о
¬A о х

То есть, если у нас исходное выражение — истина (1), то его отрицание будет ложным (0). А если исходное выражение — ложь (0), то его отрицание — истина (1).

Сложение

Оставшиеся операции требуют наличия двух переменных. Обозначим одно выражение —

Читайте также:  Как из ленточки сделать бантик пошагово

  1. Е=1, Н=1 ,тогда Е v Н = 1. Если оба выражения истинны, тогда и их дизъюнкция также истинна.
  2. Е=0, Н=1 ,в итоге Е v Н = 1. Е=1, Н=0 , тогда Е v Н= 1. Если хотябы одно из выражений истинно, тогда и результат их сложения будет истиной.
  3. Е=0, Н=0 ,результат Е v Н = 0. Если оба выражения ложны, то их сумма также — ложь.

Для краткости создадим таблицу истинности.

Дизъюнкция

Е х х о о
Н х о х о
Е v Н х х х о

Умножение

Разобравшись с операцией сложения, переходим к умножению (конъюнкции). Воспользуемся теми же обозначениями, которые были приведены выше для сложения. При письме логическое умножение обозначается значком "&", либо буквой "И".

  1. Е=1, Н=1 ,тогда Е & Н = 1. Если оба выражения истинны, тогда их конъюнкция — истина.
  2. Если хотя бы одно из выражений — ложь, тогда результатом логического умножения также будет ложь.
  • Е=1, Н=0, поэтому Е & Н = 0.
  • Е=0, Н=1, тогда Е & Н = 0.
  • Е=0, Н=0, итог Е & Н = 0.
Конъюнкция

Е х х
Н х х
Е & Н х

Следствие

Логическая операция следования (импликация) — одна из простейших в математической логике. Она основана на единственной аксиоме — из правды не может следовать ложь.

  1. Е=1, Н=, поэтому Е -> Н = 1. Если пара влюблена, то они могут целоваться — правда.
  2. Е=0, Н=1, тогда Е -> Н = 1. Если пара не влюблена, то они могут целоваться — также может быть истиной.
  3. Е=0, Н=0, из этого Е -> Н = 1. Если пара не влюблена, то они и не целуются — тоже правда.
  4. Е=1, Н=0, результатом будет Е -> Н = 0. Если пара влюблена, то они не целуются — ложь.

Для облегчения выполнения математических действий также приведём таблицу истинности.

Импликация

Е х х о о
Н х о х
Е -> Н х о х х

Равенство

Последней рассмотренной операцией станет логическое тождественное равенство или эквивалентность. В тексте оно может обозначаться как ". тогда и только тогда, когда. ". Исходя из этой формулировки, напишем примеры для всех исходных вариантов.

  1. А=1, В=1, тогда А≡В = 1. Человек пьёт таблетки тогда и только тогда, когда болеет. (истина)
  2. А=0, В=0, в итоге А≡В = 1. Человек не пьёт таблетки тогда и только тогда, когда не болеет. (истина)
  3. А=1, В=0, поэтому А≡В = 0. Человек пьёт таблетки тогда и только тогда, когда не болеет. (ложь)
  4. А=0, В=1 ,тогда А≡В = 0. Человек не пьёт таблетки тогда и только тогда, когда болеет. (ложь)
Эквивалентность

А х о х о
В х о х
А≡В х х о о

Свойства

Итак, рассмотрев простейшие логические операции в информатике, можем приступить к изучению некоторых их свойств. Как и в математике, у логических операций существует свой порядок обработки. В больших логических выражениях операции в скобках выполняются в первую очередь. После них первым делом подсчитываем все значения отрицания в примере. Следующим шагом станет вычисление конъюнкции, а затем дизъюнкции. Только после этого выполняем операцию следствия и, наконец, эквивалентности. Рассмотрим небольшой пример для наглядности.

Порядок выполнения действий следующий.

Для того чтобы решить этот пример, нам потребуется построить расширенную таблицу истинности. При её создании помните, что столбцы лучше располагать в том же порядке, в каком и будут выполняться действия.

Решение примера

А В
х о х о х х х х х о о х х х о о х о о х о о х о о о х о

Как мы видим, результатом решения примера станет последний столбец. Таблица истинности помогла решить задачу с любыми возможными исходными данными.

Заключение

В этой статье были рассмотрены некоторые понятия математической логики, такие как информатика, свойства логических операций, а также — что такое логические операции сами по себе. Были приведены некоторые простейшие примеры для решения задач по математической логике и таблицы истинности, необходимые для упрощения этого процесса.

Оставьте первый комментарий

Оставить комментарий

Ваш электронный адрес не будет опубликован.


*