Как растворить медь в домашних условиях

Многие из нас занимаются травлением плат, пожалуй, с подросткового возраста. Рецепты предыдущих поколений известны и используются десятками лет.

Все известные методы обладают как индивидуальными, так и общими недостатками, усугубляемыми отсутствием собственной оборудованной мастерской, закрытой для доступа любопытных домашних питомцев и родственников. Практически не удаляемые пятна, неприятный запах, общая опасность некоторых используемых реактивов и прочие причины влекут за собой необходимость оправдываться и доказывать очевидную вещь – пользу от занятий радиолюбительством.

Помимо прочего в самый неподходящий момент, так сказать на взлёте деятельной активности, вдруг не оказывается нужных компонентов, или оказалось, что они уже пришли в негодность. Порой, быстро и в доступных точках продаж, найти привычные или, вообще, любые реактивы и вовсе не представляется возможным, что влечёт за собой потери целых дней творчества…

Однако всё в этой жизни меняется… Растём мы, растут и наши запросы, увеличиваются рабочие напряжения и токи. И вот мы уже меняем медь 32 мкм на медь 105 мкм и длительность, и расход реактивов, и качество процесса нас не устраивают.

Для начала, рассмотрим, так сказать классику. Нетерпеливые могут, конечно, пропустить

уже известное и много где упомянутое, и начать с п.5. Но, думаю, краткое изложение по схеме: уравнение реакции, анализ течения с указанием окислительно-восстановительных потенциалов (далее по тексту ОВП), достоинства и недостатки, создадут более полную картину.

Следует заметить, что мы ориентируемся на нормальный ОВП а именно рассчитанный по справочным данным при активности как самого реактива, так и продуктов реакции равной 1 экв./литр.

Итак, с п.1 по п.4 рассматриваем классику:

1. Травление меди раствором хлорного железа.

Рис. 1 1 -стандартная упаковка; 2 — шестиводное хлорное железо; 3 — безводное хлорное железо (растворяется в воде со спецэффектами, но получаемый раствор аналогичен раствору из водного железа); 4- раствор в начале травления; 5 — отработанный раствор хлорного железа; 6 — меднёный гвоздь.

Движущая сила (разность нормальных ОВП потенциалов) для этой реакции составляет:

Это не так уж и мало, но, потенциал и скорость процесса сильно уменьшаются по мере накопления в растворе продуктов реакции, что наверняка было всеми замечено. Поработавший раствор травит медь заметно медленнее, чем свежий.

Некоторые пытаются «оживить» отработанный раствор, осаждая из него медь гвоздями, скрепками и т.п., получая, сначала прозрачный зеленовато-голубоватый раствор, очень медленно превращающийся, при доступе воздуха, в ни к чему непригодную «чёрную жижу», которая, при утилизации, разукрашивает сантехнику в цвета ржавчины. Однако удаление меди из отработанного раствора, совершенно бесполезно, поскольку вместо неё в растворе прибавляется хлорид закисного железа FeCl2, который растворять медь не способен в принципе. Вопрос регенерации ХЖ решило бы добавление соляной кислоты, но если у вас она есть, и работать с ней вы согласны, то вам совершенно не нужно отработанное ХЖ, об этом ниже.

Достоинства:
— умеренная скорость травления меди.
— использование единственного основного компонента, а именно хлорного железа.
— простота изготовления раствора «на глаз», главное, что бы концентрация была достаточной.
— не критична температура окружающей среды.

Недостатки:
— Скорость травления и ОВП раствора заметно снижаются по ходу процесса.
— Большим минусом этого метода можно назвать невысокую доступность хлорного железа для рядового радиолюбителя.
— Относительная дороговизна, порой на рынках заламывают немалую цену за мелкую фасовку.
— Также, немалым минусом являются трудноудаляемые пятна, которые оставляет хлорное железо на всём, с чем только не соприкоснётся. Одежда портится, обычно, необратимо.
— ХЖ заметно летуче, особенно при нагревании, плохо хранится (гидролизуется) при доступе воздуха, склонно вылезать из негерметичной тары, загрязняя собой и продуктами своего гидролиза все окружающие предметы.

2. Травление медным купоросом с солью.

Рис. 2 1 — варианты фасовки; 2 — соль и медный купорос; 3 — раствор бирюзового цвета до травления; 4 — отработанный раствор медного купороса.

Тут ключевую роль играет хлорид натрия (соль), поскольку, медь с медным купоросом практически не реагирует.

Движущая сила для этой реакции получилась немного меньше чем, у раствора хлорного железа — около 0,40 В. Следует заметить, что в процессе травления, на поверхности меди образуется осадок продукта реакции – нерастворимый хлорид меди(I) CuCl. Для успешного проведения травления просто необходим значительный избыток NaCl и подогрев, которые помогают справиться с этой напастью.

Несмотря на то, что отработанный раствор напоминает «чёрную жижу», он поглощает кислород из воздуха, и при подкислении, может быть регенерирован.

Достоинства:
— доступность медного купороса, широко применяемого в сельском хозяйстве, как средство защиты растений.
— в отличие от ХЖ не оставляет таких пятен и разводов. Пятна получаются другого цвета – синие. Но, они легко удаляются уксусом.

Недостатки:
— Медный купорос ядовит.
— В последнее время цена медного купороса бьет рекорды, в отличие от размеров фасовки, которые систематически уменьшаются.
— Требуется подогрев раствора для быстрого протекания реакции.
— Невысокая скорость травления.

3. Травление персульфатами (персульфат аммония или персульфат натрия).

Рис. 3 1 — упаковка и персульфаты россыпью; 2 — раствор до травленя прозрачен, после травления голубой ибо является раствором медного купороса и сульфата натрия.

Весьма интересная система, поскольку, казалось бы, одно вещество (персульфат чего-нибудь) — на самом деле, в процессе травления, распадается на три: перекись водорода, серную кислоту и не участвующий ни в чем сульфат натрия или аммония. Об этом факте говорит необходимость существенного подогревания раствора персульфата, которое необходимо для его гидролиза.

Движущая сила процесса, казалось бы бьёт рекорд 1,43 В! Вот только, практически, такой потенциал не достигается, поскольку персульфат, даже при нагревании его раствора не гидролизуется мгновенно и полностью.

Читайте также:  Как выглядит трава молочай

Достоинства
— Высокий ОВП
— Высокая скорость травления
— Не оставляет грязных пятен
— Однокомпонентный состав

Недостатки
— Доступность заметно ниже чем у ХЖ
— Вместо пятен, склонен отбеливать и делать дырки в ткани.
— Требуется подогрев
— Применяются растворы высоких концентраций, поскольку больше половины массы реактива, в итоге, составляет балластный сульфат.

4. Травление перекисью водорода в соляной кислоте

Рис. 4 1 — 3% раствор перикиси водорода (аптеки); 2 — таблетки гидроперита (помимо медицины используются для отбеливания волос крашеными блондинками); 3 — соляная кислота — отлично портит вещи и раздражает кожу в то же время содержится в желудке ввиде от 0,4 до 0,6% раствора.

Перекись водорода уже присутствует в своей максимальной концентрации, что позволяет достигнуть максимального ОВП в 1,43 В.

В присутствие соляной кислоты или хлоридов реакция растворения меди протекает через образование промежуточного продукта CuCl, который не успевает выпасть в осадок и быстро окисляется далее. Образование этого продукта заметно понижает потенциал окисления меди, что существенно облегчает течение реакции. т.е. хлориды в данной системе являются катализатором.

Достоинства
— Самая высокая скорость травления из всех рассматриваемых.
— Не оставляет грязных пятен
— Процесс быстро протекает при комнатной температуре.
— Высокая доступность: перекись можно купить в аптеке, а вместо соляной кислоты годится подсоленный аккумуляторный электролит.

Недостатки
— Использование сильных кислот неизбежно приводит к дыркам в штанах и последующему разбору полётов.

и вот тут мы подходим к самому интересному:

5. Травление меди перекисью водорода в присутствие лимонной кислоты.

Рис. 5 1 — 20ти грамововая упаковка; 2 — россыпь лимонной кислоты; 3 — 15ти граммовые упаковки.

Анализ двух предыдущих методов (см. п.3 и п.4) привёл меня к выводу, что природа, используемой совместно с перекисью водорода, кислоты имеет малосущественное значение, и будет оказывать влияние только на скорость травления меди. Это значит, что можно использовать любую походящую кислоту, которая не окисляется перекисью водорода, например (роюсь в кухонном шкафчике) лимонную, ну или уксусную – но отставим пока уксус из-за неприятного запаха.

Выбор лимонной кислоты вызван тем, что она: доступна, имеет достаточную силу и не пахнет. Более того, лимонная кислота образует прочнейший комплекс с медью, что исключает всякое влияние продуктов реакции на её скорость! А для ускорения процесса следует добавить не расходующийся хлорид натрия.

Движущая сила процесса, внимание: 1,775 В, что является абсолютным рекордом!

Достоинства
— Весьма высокая скорость травления.
— Не оставляет грязных пятен
— Процесс быстро протекает при комнатной температуре.
— Не требуется труднодоступных реактивов: 3% перекись продаётся в аптеке, лимонная кислота – в гастрономе, а соль можно найти на любой кухне
— Травильный раствор безопасен для тела и одежды
— Это самый дешевый метод травления меди!

Недостатки, куда же без них.
— Средний цитрат меди малорастворим и может выпасть в осадок в т.ч. на поверхность травления. Для предотвращения возникновения проблемы не следует экономить лимонную кислоту.

Рекомендуемый способ приготовления травильного раствора:

В 100 мл аптечной 3% перекиси водорода растворяется 30 г лимонной кислоты и 5 г поваренной соли. Этого раствора должно хватить для травления 100 см2 меди, толщиной 35мкм.

Соль при подготовке раствора можно не жалеть. Так как она играет роль катализатора, то в процессе травления практически не расходуется. Перекись 3% не стоит разбавлять дополнительно т.к. при добавлении остальных ингредиентов её концентрация снижается.

Чем больше будет добавлено перекиси водорода (гидроперита) тем быстрее пойдёт процесс, но не переусердствуйте — раствор не хранится, т.е. повторно не используется, а значит и гидроперит будет просто перерасходован. Избыток перекиси легко определить по обильному «пузырению» во время травления.

Однако добавление лимонной кислоты и перекиси вполне допустимо, но рациональнее приготовить свежий раствор.

Вы можете использовать вместо лимонной и уксусную кислоту, но неприятный запах и меньшая скорость травления могут вас не устроить. ОВП реакции с уксусной кислотой 1,35В – что в принципе не так уж и мало, например в сравнении с ХЖ.

Напомню для тех кто только начинает:

— Для приготовления всех травильных растворов необходимо использовать пластиковую либо стеклянную посуду.
— Подогрев растворов следует проводить на водяной бане или специально предназначенными приспособлениями.
— Все растворы полученные после травления ядовиты из-за высокого содержания меди.
— Соблюдайте технику безопасности при работе с сильными кислотами.
— Утилизация отработанных растворов допустима путём выливания в общую канализацию.
— После травления плату следует ополоснуть слабым раствором уксуса и тёплой водой.

Использование: переработка вторичных отходов, например электронного лома, омедненных отходов металлических циркония и гафния, отходов сверхпроводниковых материалов в медной оболочке. Способ включает перевод меди в раствор азотной кислотой, нейтрализацию выделяющихся оксидов азота, переработку полученных растворов. Растворение меди ведут азотной кислотой с концентрацией не более 270 г/л. Одновременно проводят нейтрализацию оксидов азота непосредственно в растворе предварительно введенным в раствор нитратом аммония. Нитрат аммония вводят в азотную кислоту в количестве 100-300% от стехиометрически необходимого. Скорость растворения меди регулируют постепенным введением выщелачивающего раствора. 2 з.п.ф-лы.

Изобретение относится к способам растворения металлической меди и может быть использовано для переработки вторичных отходов, например электронного лома, омедненных отходов металлических циркония и гафния, отходов сверхпроводниковых материалов в медной оболочке.

Известен способ растворения меди в горячей концентрированной серной кислоте [Реми Г. Курс неорганической химии. — М.: Мир, 1974, Т.2]. По этому способу в результате растворения образуется сульфат меди и выделяется оксид (II) серы. Основные недостатки способа использование крайне агрессивного реагента и образование токсичного газа, который необходимо уловить (нейтрализовать).

Наиболее близок к изобретению по технической сущности способ растворения меди в азотной кислоте[Глинка Н.Г. Общая химия. М. Госхимиздат, 1952.]. Этот процесс проходит легче, без нагревания. Возможно растворение меди в концентрированной кислоте и растворение в разбавленной кислоте.

Читайте также:  Как посадить орхидею в закрытую систему

По первому варианту на 1 моль меди по стехиометрии расходуется 3 моль азотной кислоты, и в результате реакции образуется нитрат меди и выделяются оксиды азота в соотношении NO:NO2 = 1:1. Растворение меди в концентрированной азотной кислоте сопровождается сильным разогревом раствора и, как следствие, термическим разложением азотной кислоты и дополнительным выделением оксидов азота в газовую фазу.

По второму варианту расход азотной кислоты несколько снижается (2,67 моль кислоты на 1 моль меди), причем 75% кислоты расходуется на образование нитрата меди, а 25%-оксида азота (NO):

Недостатки азотнокислого растворения меди: выделение в газовую фазу значительного количества оксидов азота, улавливание или нейтрализация которых связаны с большими техническими трудностями и затратами. Это особенно относится к малотоннажным производствам, например к переработке электронного лома или удалению медного покрытия с поверхности отходов, например металлических циркония или гафния.

Технический результат, на достижение которого направлен предлагаемый способ, — снижение выделения оксидов азота при растворении меди в азотной кислоте.

Результат достигается тем, что способ растворения меди включает в себя перевод меди в раствор азотной кислотой, нейтрализацию выделяющихся оксидов азота и переработку полученных растворов. Растворение меди ведут азотной кислотой с концентрацией не более 270 г/л при одновременной нейтрализации оксидов азота непосредственно в растворе по мере их образования предварительно введенным в раствор нитратом аммония, причем нитрат аммония вводят в азотную кислоту в количестве 100-300% от стехиометрически необходимого и скорость растворения меди регулируют порционным и постепенным введением выщелачивающего раствора.

Нитрат аммония выполняет роль восстановителя выделяющихся оксидов азота:

Способ осуществляется следующим образом.

Обрабатываемые медьсодержащие отходы помещают в реактор и заливают выщелачивающим раствором. В качестве последнего используют водный раствор азотной кислоты (с содержанием НNO3 не более 270 г/л), в котором растворен нитрат аммония с избытком 100-300% по отношению к стехиометрически необходимому в соответствии с реакцией

Процесс выщелачивания проводят при комнатной температуре. Скорость растворения меди регулируют порционным и постепенным введением выщелачивающего раствора.

После окончания выщелачивания меди отходы промывают водой, сушат и отправляют на утилизацию. Медьсодержащие растворы регенерируют.

Сочетание относительно низких концентраций азотной кислоты в растворе и температуры процесса выщелачивания обеспечивает снижение скорости растворения меди и выделения оксидов азота, что создает благоприятные условия для перевода последних в элементарный азот. Эффект восстановления оксидов азота нитратом аммония усиливается при порционном и постепенном введении выщелачивающего раствора в реактор.

Выщелачивание медной пластины 10Х1 Oм·м толщиной 0,44 мм проводили концентрированной кислотой (d=l,356 кг/л) при расходе кислоты 3,3 моль/моль Сu. Полное растворение пластины произошло за 2 ч и сопровождалось бурным выделением оксидов азота и разогревом раствора. Выделяющиеся при выщелачивании меди газы содержали смесь NO и NO2

Выщелачивание медной пластины проводили в тех же условиях, что и в примере 1, но в присутствии нитрата аммония (1,3 моль/моль Сu). Процесс растворения проходил несколько медленнее, но также через 2 ч закончился полностью и сопровождался бурным выделением оксидов азота и разогревом раствора, несмотря на наличие в выщелачивающем растворе нитрата аммония.

Выщелачивание медной пластины толщиной 0,44 мм проводили раствором азотной кислоты (364 г/л) при расходе кислоты 3,3 моль/моль Сu и нитрата аммония 1,3 моль/моль Сu. Через 5 ч растворилось 98% меди. Выделяющиеся газы окрашены в бурый цвет и содержали 94% оксидов азота и 6% азота.

Выщелачивание медной пластины (пример 1) проводили разбавленной в три раза концентрированной азотной кислотой (266 г/мл) при расходе кислоты 3,3 моль/моль Си. Через 5 ч растворилось 97,2% меди, разогрева раствора не было, в газовую фазу переходит закись азота, слабо окрашенная в бурый цвет.

Выщелачивание медной пластины проводили в условиях опыта 4, но в присутствии нитрата аммония — 1,3 моль/моль Сu, 200% от стехиометрически необходимого по реакции (4). Следует отметить существенное снижение скорости растворения меди. Через 5 ч растворилось 72,0% меди. В газовую фазу выделяется в основном молекулярный азот (97%), разогрева раствора не обнаружено. Остаточная кислотность 85,7 г/л. Количество перешедшей в раствор меди и расход азотной кислоты практически полностью соответствуют реакции (4).

Выщелачивание медной пластины толщиной 0,44 мм проводили при увеличенном, по сравнению с опытом 5 содержании нитрата аммония в растворе — 2 моль/моль Сu, т.е. 300% от стехиометрически необходимого по реакции (4). Достигнуто 100%-ное восстановление закиси азота и выделение в газовую фазу молекулярного азота.

Выщелачивание медной пластины толщиной 0,44 мм проводили при пониженном по сравнению с опытом 5 содержании нитрата аммония в растворе — 0,65 моль/моль Сu, т.е. 100% от стехиометрически необходимого по реакции (4). Содержание азота в выделяющихся газах снизилось до 66%.

Выщелачивание медной пластины толщиной 0,12 мм проводили раствором азотной кислоты (255 г/л) при расходе кислоты 3,0 моль/моль Сu в присутствии нитрата аммония (2,0 моль/моль Сu). Содержание азота в выделяющихся газах 100%.

Выщелачивание медной пластины (пример 8) проводили раствором азотной кислоты (255 г/л) при расходе кислоты 4,6 моль/моль Сu в присутствии нитрата аммония — 1,35 моль/моль Сu, 150% от стехиометрически необходимого по реакции (4). Увеличение расхода кислоты при одновременном увеличении поверхности обрабатываемой медной пластины (примерно в 3,7 раза по сравнению с пластиной толщиной 0,44 мм) привело к существенному снижению степени восстановления закиси азота: содержание азота в выделяющихся газах понизилось до 27% (в примере 5 — 97%)

Выщелачивание медной пластины (0,12 мм) проводили тем же раствором азотной кислоты, что и в опыте 9, следующим образом. Раствор разделили на три части и одной залили медную пластину. Остальные две ввели в реактор через 3 и 6 ч соответственно. Доля азота в выделяющихся газах возросла до 62%.

Проведен опыт, аналогичный описанному в примере 10, с одним изменением: первая часть раствора предварительно была разбавлена водой в 2 раза. Выход азота повысился до 89%.

Читайте также:  Как определить ядовитые грибы

Из приведенных примеров видно, что для восстановления выделяющихся в процессе выщелачивания меди оксидов азота необходимо привести в равновесие скорости их образования и взаимодействия с нитратом аммония. Этого можно добиться снижением концентрации азотной кислоты, введением в раствор избытка нитрата аммония, постепенным и порционным вводом кислоты в реактор в процессе реакции для снижения скорости образования оксидов азота.

Техническая эффективность предлагаемого способа выщелачивания металлической меди заключается в том, что при использовании предлагаемого способа в результате взаимодействия оксидов азота с нитратом аммония в газовую фазу в основном выделяется молекулярный азот, чем резко облегчается очистка отходящих газов.

1. Способ растворения меди, включающий в себя перевод меди в раствор азотной кислотой, отличающийся тем, что растворение меди ведут азотной кислотой с концентрацией не более 270 г/л при одновременной нейтрализации оксидов азота непосредственно в растворе по мере их образования предварительно введенным в раствор нитратом аммония, после чего проводят переработку полученных растворов.

2. Способ по п.1, отличающийся тем, что нитрат аммония вводят в азотную кислоту в количестве 100-300% от стехиометрически необходимого.

3. Способ по п.1, отличающийся тем, что скорость растворения меди регулируют порционным постепенным введением выщелачивающего раствора.

Процесс меднения металлических изделий называется гальваностегией. Он основан на осаждении на поверхность деталей другого металла, растворимого в специальной жидкости.

Технология омеднения включает изготовление раствора и создание разноименных электродов. В процессе гальваностегии, ионы меди, растворенные в электролите, притягиваются отрицательным полюсом (обрабатываемая деталь) на свою поверхность.

Омеднение различных деталей в промышленных масштабах применяется не только, как конечный процесс обработки поверхности металлических изделий. Он может использоваться для подготовки деталей к следующей операции, например, никелированию, серебрению или хромированию изделий.

Эти металлы плохо осаждаются на поверхность стальных деталей, а на омедненную поверхность ложатся очень хорошо. В свою очередь медь, осевшая на стальные детали, держится прочно и способствует выравниванию различных дефектов на ее поверхности.

Видео урок по меднению пули своими руками

Меднение деталей в растворе с электролитом

Для металлических деталей можно выполнить меднение в домашних условиях. Рассмотрим меднение, с опусканием детали в раствор с электролитом. Для этого необходимо иметь:

  • небольшие медные пластины,
  • несколько метров токопроводящей проволоки;
  • источник тока, с напряжением до 6 В;
  • рекомендуется также использовать реостат, для регулирования тока и амперметр.
  • В качестве жидкости, хорошо растворяющей медь, применяется обычный электролит. Его можно купить или приготовить в домашних условиях. Для этого потребуется 3 мл серной кислоты, на каждые 100 мл дистиллированной воды. Необходимый раствор, можно получить, добавив в полученный электролит до 20 гр. медного купороса.
  • Перед началом процесса меднения детали, ее необходимо очистить наждачкой, чтобы снять оксидную пленку с поверхности.
  • Затем, деталь обезжиривается горячим содовым раствором, и промывается чистой водой.
  • В стеклянную емкость, нужного объема, наливается приготовленный раствор электролита.
  • Затем, туда опускаются две медные пластины, на токопроводящих проводах. Между двумя медными пластинами подвешивается, предназначенная для меднения в домашних условиях деталь, на аналогичном проводе. Необходимо проследить, чтобы медные пластины и деталь были полностью залиты раствором электролита.
  • На следующем этапе, концы проводов от медных пластин подсоединяются к плюсовой, а обрабатываемая деталь к минусовой клеммам источника тока. Последовательно, в созданную электрическую цепь нужно подсоединить реостат и амперметр. После включения тока в цепи, он реостатом устанавливается в пределах 15 мА на 1 см? площади поверхности детали.
  • Выдержав, обрабатываемую деталь в растворе, в пределах 15-20 минут, нужно выключить электропитание и извлечь изделие из раствора. За этот непродолжительный промежуток времени, поверхность детали покроется тонким слоем меди. Толщина покрытия будет зависеть от продолжительности процесса меднения. Таким образом, можно достичь меднения поверхности любого изделия слоем в 300 мкм и более.

Меднение детали, без опускания в раствор

Второй способ меднения в домашних условиях металлических изделий, подразумевает выполнение этого процесса без опускания обрабатываемой детали в раствор электролита.

Этот вариант подходит для нанесения покрытия на цинковые и алюминиевые изделия.

  1. Для этого способа меднения потребуется многожильный медный провод, с двух концов которого, необходимо снять изоляцию. С одной стороны мягкий провод нужно растеребить. Таким образом получается изделие в виде кисточки. Чтобы удобнее в дальнейшем было работать, к этому концу провода нужно привязать твердый предмет в виде рукоятки. Второй очищенный конец провода нужно соединить к положительной клемме источника электрического тока. Напряжение не должно превышать 6 В.
  2. Ранее описанным способом нужно приготовить электролит, размешанный с медным купоросом. В этом методе меднения деталей, раствор можно наливать в любую посуду. Рекомендуется выбрать широкую тару, чтобы было удобно макать медную кисточку из проволоки. Далее необходимо небольшую металлическую деталь положить в эту посуду, с невысокими краями. Предварительно ее нужно очистить, прокипятить в жидкости со стиральным порошком, и промыть. Эту деталь нужно соединить с помощью провода к отрицательной клемме источника тока, с напряжением 6 В.
  3. Процесс меднения происходит следующим образом. Растеребленный конец медной проволоки нужно периодически обмакивать в растворе электролита, с медным купоросом и проводить вдоль детали, не прикасаясь «кистью» к ее поверхности. Но нужно предусмотреть, чтобы между концом кисти и деталью был небольшой слой раствора (катод и анод должны быть всегда смочены электролитом). В процессе меднения отрицательно заряженная деталь притягивает ионы меди и ее поверхность покрывается небольшим красным слоем. После нанесения покрытия, изделие нужно высушить и натереть до блеска.

Таким меднением, без погружения изделия в электролит, чаще обрабатываются детали больших размеров. Они не вмещаются в подобранную посуду с электролитом, и поверхность обрабатывается кистью небольшими участками.

Видео руководство по меднению деталей в домашних условиях

Оставьте первый комментарий

Оставить комментарий

Ваш электронный адрес не будет опубликован.


*