Как рассчитать тепловой насос

Энергосбережение , Энергоаудит , Энергетический паспорт , Программа энергоэффективности , Тепловизионное обследование , Электролаборатория

тел. +7 (495) 589-96-11
+7 (498) 720-93-43

Передвижная электротехническая лаборатория

Отопительное оборудование

Электротехническое оборудование

Энергоаудит

Программа энергосбережения

Энергосбережение

Библиотека

Как известно, тепловые насосы используют бесплатные и возобновляемые источники энергии: низкопотенциальное тепло воздуха, грунта, подземных, сточных и сбросовых вод технологических процессов, открытых незамерзающих водоемов. На это затрачивается электроэнергия, но отношение количества получаемой тепловой энергии к количеству расходуемой электрической составляет порядка 3–7. Говоря более точно, источниками низкопотенциального тепла могут быть наружный воздух температурой от –15 до +15°С, отводимый из помещения воздух (15–25°С), подпочвенные (4–10°С) и грунтовые (более 10°C) воды, озерная и речная вода (0–10°С), поверхностный (0–10°С) и глубинный (более 20 м) грунт (10°С).

Если в качестве источника тепла выбран атмосферный или вентиляционный воздух, применяются тепловые насосы, работающие по схеме «воздух–вода». Насос может быть расположен внутри или снаружи помещения. Воздух подается в его теплообменник с помощью вентилятора.

При использовании в качестве источника тепла грунтовой воды она подается из скважины с помощью насоса в теплообменник насоса, работающего по схеме «вода–вода», и либо закачивается в другую скважину, либо сбрасывается в водоем.
Если источник – водоем, на его дно укладывается петля из металлопластиковой или пластиковой трубы. По трубопроводу циркулирует раствор гликоля (антифриз), который через теплообменник теплового насоса передает тепло фреону.

Возможны два варианта получения низкопотенциального тепла из грунта: укладка металлопластиковых труб в траншеи глубиной 1,2–1,5 м либо в вертикальные скважины глубиной 20–100 м. Иногда трубы укладывают в виде спиралей в траншеи глубиной 2–4 м. Это значительно уменьшает общую длину траншей. Максимальная теплоотдача поверхностного грунта составляет 50–70 кВт•ч/м 2 в год. По данным зарубежных компаний, срок службы траншей и скважин составляет более 100 лет.

Расчет горизонтального коллектора теплового насоса

Съем тепла с каждого метра трубы зависит от многих параметров: глубины укладки, наличия грунтовых вод, качества грунта и т.д. Ориентировочно можно считать, что для горизонтальных коллекторов он составляет 20 Вт/м. Более точно: сухой песок – 10, сухая глина – 20, влажная глина – 25, глина с большим содержанием воды – 35 Вт/м. Разницу температуры теплоносителя в прямой и обратной линии петли при расчетах принимают обычно равной 3 °С. На участке над коллектором не следует возводить строений, чтобы тепло земли пополнялось за счет солнечной радиации.

Минимальное расстояние между проложенными трубами должно быть 0,7–0,8 м. Длина одной траншеи составляет обычно от 30 до 120 м. В качестве теплоносителя первичного контура рекомендуется использовать 25-процентный раствор гликоля. В расчетах следует учесть, что его теплоемкость при температуре 0 °С составляет 3,7 кДж/(кг•К), плотность – 1,05 г/см 3 . При использовании антифриза потери давления в трубах в 1,5 раза больше, чем при циркуляции воды. Для расчета параметров первичного контура теплонасосной установки потребуется определить расход антифриза:

Vs = Qo•3600 / (1,05•3,7•.t),

где .t – разность температур между подающей и возвратной линиями, которую часто принимают равной 3 К, а Qo – тепловая мощность, получаемая от низкопотенциального источника (грунт). Последняя величина рассчитывается как разница полной мощности теплового насоса Qwp и электрической мощности, затрачиваемой на нагрев фреона P:

Суммарная длина труб коллектора L и общая площадь участка под него A рассчитываются по формулам:

Здесь q – удельный (с 1 м трубы) теплосъем; da – расстояние между трубами (шаг укладки).

Пример расчета Теплового Насоса

Исходные условия: теплопотребность коттеджа площадью 120–240 м 2 (в зависимости от теплоизоляции) – 12 кВт; температура воды в системе отопления должна быть 35 °С; минимальная температура теплоносителя – 0 °С. Для обогрева здания выбран тепловой насос WPS 140 l (Buderus) мощностью 14,5 кВт (ближайший больший типоразмер), затрачивающий на нагрев фреона 3,22 кВт. Теплосъем с поверхностного слоя грунта (сухая глина) q равняется 20 Вт/м. В соответствии с показанными выше формулами рассчитываем:

  1. требуемую тепловую мощность коллектора Qo = 14,5 – 3,22 = 11,28 кВт;
  2. суммарную длину труб L = Qo/q = 11,28/0,020 = 564 м. Для организации такого коллектора потребуется 6 контуров длиной по 100м;
  3. при шаге укладки 0,75 м необходимая площадь участка А = 600 Ч 0,75 = 450 м 2 ;
  4. общий расход гликолевого раствора Vs = 11,28•3600/ (1,05•3,7•3) = 3,51 м 3 /ч, расход на один контур равен 0,58 м 3 /ч.

Для устройства коллектора выбираем металлопластиковую трубу типоразмера 32Ч3 (например, Henco). Потери давления в ней составят 45 Па/м; сопротивление одного контура – примерно 7 кПа; скорость потока теплоносителя – 0,3 м/с.

Читайте также:  Как выбрать противопролежневый матрас отзывы какой лучше

Расчет зонда

При использовании вертикальных скважин глубиной от 20 до 100 м в них погружаются U-образные металлопластиковые или пластиковые (при диаметрах выше 32 мм) трубы. Как правило, в одну скважину вставляется две петли, после чего она заливается цементным раствором. В среднем удельный теплосъем такого зонда можно принять равным 50 Вт/м. Можно также ориентироваться на следующие данные по теплосъему:

  • сухие осадочные породы – 20 Вт/м;
  • каменистая почва и насыщенные водой осадочные породы – 50 Вт/м;
  • каменные породы с высокой теплопроводностью – 70 Вт/м;
  • подземные воды – 80 Вт/м.

Температура грунта на глубине более 15 м постоянна и составляет примерно +10 °С. Расстояние между скважинами должно быть больше 5 м. При наличии подземных течений, скважины должны располагаться на линии, перпендикулярной потоку.

Подбор диаметров труб проводится исходя из потерь давления для требуемого расхода теплоносителя. Расчет расхода жидкости может проводиться для .t = 5 °С.

Пример расчета: Исходные данные – те же, что в приведенном выше расчете горизонтального коллектора. При удельном теплосъеме зонда 50 Вт/м и требуемой мощности 11,28 кВт длина зонда L должна составить 225 м.

Для устройства коллектора необходимо пробурить три скважины глубиной по 75 м. В каждой из них размещаем по две петли из металлопластиковой трубы типоразмера 26Ч3; всего – 6 контуров по 150 м.

Общий расход теплоносителя при .t = 5 °С составит 2,1 м3/ч; расход через один контур – 0,35 м3/ч. Контуры будут иметь следующие гидравлические характеристики: потери давления в трубе – 96 Па/м (теплоноситель – 25-процентный раствора гликоля); сопротивление контура – 14,4 кПа; скорость потока – 0,3 м/с.

Выбор оборудования

Поскольку температура антифриза может изменяться (от –5 до +20 °С) в первичном контуре тепло насосной установки необходим расширительный бак.

Рекомендуется также установить на возвратной линии накопительный бак: компрессор теплового насоса работает в режиме «включено-выключено». Слишком частые пуски могут привести к ускоренному износу его деталей. Бак полезен и как аккумулятор энергии – на случай отключения электроэнергии. Его минимальный объем принимается из расчета 10–20 л на 1 кВт мощности теплового насоса.

При использовании второго источника энергии (электрического, газового, жидко- или твердотопливного котла) он подключается к схеме через смесительный клапан, привод которого управляется тепловым насосом или общей системой автоматики.

В случае возможных отключений электроэнергии нужно увеличить мощность устанавливаемого теплового насоса на коэффициент, рассчитываемый по формуле: f = 24/(24 – tоткл), где tоткл – продолжительность перерыва в электроснабжении.

В случае возможного отключения электроэнергии на 4ч этот коэффициент будет равен 1,2.

Мощность теплового насоса можно подбирать исходя из моновалентного или бивалентного режима его работы. В первом случае предполагается, что тепловой насос используется как единственный генератор тепловой энергии.

Следует принимать во внимание: даже в нашей стране продолжительность периодов с низкой температурой воздуха составляет небольшую часть отопительного сезона. Например, для Центрального региона России время, когда температура опускается ниже –10 °С, составляет всего 900 ч (38 сут), в то время, как продолжительность самого сезона – 5112 ч, а средняя температура января составляет примерно –10 °С. Поэтому наиболее целесообразной является работа теплового насоса в бивалентном режиме, предусматривающая включение дополнительного теплогенератора в периоды, когда температура воздуха опускается ниже определенной: –5 °С – в южных регионах России, –10 °С – в центральных. Это позволяет снизить стоимость теплового насоса и, особенно, работ по монтажу первичного контура (прокладка траншей, бурение скважин и т.п.), которая сильно увеличивается при возрастании мощности установки.

В условиях Центрального региона России для примерной оценки при подборе теплового насоса, работающего в бивалентном режиме, можно ориентироваться на соотношение 70/30: 70 % потребности в тепле покрываются тепловым насосом, а оставшиеся 30 – электрическим котлом или другим теплогенератором. В южных регионах можно руководствоваться соотношением мощности теплового насоса и дополнительного генератора тепла, часто используемым в Западной Европе: 50 на 50.

Для коттеджа площадью 200 м 2 на 4 человек при тепловых потерях 70 Вт/м 2 (при расчете на –28 °С наружной температуры воздуха) потребность в тепле будет 14 кВт. К этой величине следует добавить 700 Вт на приготовление санитарной горячей воды. В результате необходимая мощность теплового насоса составит 14,7 кВт.

При возможности временного отключения электричества нужно увеличить это число на соответствующий коэффициент. Допустим, время ежедневного отключения – 4 ч, тогда мощность теплового насоса должна быть 17,6 кВт (повышающий коэффициент – 1,2). В случае моновалентного режима можно выбрать тепловой насос типа «грунт–вода» Logafix WPS 160 L (Buderus) мощностью 17,1 кВт, потребляющий 5,5 кВт электроэнергии.

Для бивалентной системы с дополнительным электрическим нагревателем и температурой установки –10 °С, с учетом необходимости получения горячей воды и коэффициента запаса, мощность теплового насоса должна быть 11,4 Вт, а электрического котла – 6,2 кВт (в сумме – 17,6). Потребляемая системой пиковая электрическая мощность составит 9,7 кВт.

Читайте также:  Как размножить аспарагус в домашних условиях

Примерная стоимость потребляемого за сезон электричества, при работе теплового насоса в моновалентном режиме составит 500 руб., а в бивалентном – 12 500. Стоимость энергоносителя при использовании только соответствующего котла составит: электричества – 42 000, дизельного топлива – 25 000, а газа – около 8000 руб. (при существующих в России низких ценах на газ). В настоящее время для наших условий по экономичности работы тепловой насос уступает только газовым котлам, а по эксплуатационным затратам, долговечности, безопасности и экологической чистоте превосходит все другие генераторы тепловой энергии.

Отметим, что при установке тепловых насосов в первую очередь следует позаботиться об утеплении здания и установке стеклопакетов с низкой теплопроводностью.

По любым вопросам связанным с приобретением тепловых насосов в Москве и других регионах РФ звоните по телефону +7 (495) 597-82-18 или оставьте электронную заявку — мы всегда будем рады Вам помочь!

Калькулятор тепловых насосов

Предварительный расчёт применения реверсивного теплового насоса

Установите числовую данную зимнего температурного режима применимого к Вашему региону. Установленная Вами температура будет исчислять пиковую тепловую нагрузку для Вашего строения.

Пример: -20 (расчет будет учитывать данную температуру, как const для первоначального выбора требуемого оборудования)

Установите числовую данную летнего температурного режима применимого к Вашему региону. Установленная Вами температура будет исчислять пиковую холодильную нагрузку для Вашего строения.

Пример: 33 (расчет будет учитывать данную температуру, как const для первоначального выбора требуемого оборудования)

Данная теплопотери (строения) это данная, которая гласит о пропускной способности стен, кровли, пола (фундамента), оконных и дверных проемов.

Такая данная вычисляется архитектурным подразделением, которое выполняло строительный проект. Так же эта данная может быть исчислена профессиональным инженером, проектировщиком выполняющим работы по проектированию отопления, вентиляции и кондиционирования (ОВиК).

ЭТО ОДНА ИЗ ГЛАВНЫХ ДАННЫХ, КОТОРАЯ ИСЧИСЛЯЕТ

ЭНЕРГОЭФФЕКТИВНОСТЬ ВАШЕГО СТРОЕНИЯ!

Чем меньше данная теплопотери, тем больше Вы экономите средств как первоначальных, так и последующих затрат.

Примерный акцент данных:

Новый энергоэффективный дом (термос) – от 20 до 40 Вт/м2

Дом среднего утепления (блок, кирпич, утепление) – от 40 до 60 Вт/м2

Старое строение (кирпич, без утепления) — от 60 до 100 Вт/м2

Установите числовую данную соответствующую Вашему строению.

Пример: 65 (расчет будет учитывать данную, как const для первоначального выбора требуемого оборудования)

Данная, которая учитывает потребление горячей воды на вашем строении.

Расчетная данная от 50 до 80 литров на одного человека в сутки.

ТЕХНОЛОГИЯ ТЕПЛОСЪЁМА

Выберите технологию по которой будет осуществляться отбор первичной энергии.

От температуры воздуха на улице, от температуры земли или температуры подземной воды.

ВОЗДУХ-ВОДА при данной технологии буровые работы не требуются, но при этом СОР системы ниже, чем у двух других источников.

ГРУНТ-ВОДА – технология при которой, отбирается тепло земли.

Вертикальный контур требует несколько скважин глубиной от 40 до 100м, с расстоянием между ними от 5 до 6м, температура первичного теплоносителя всегда в пределах от +10°С до +15°С, что положительно влияет на СОР системы.

Горизонтальный контур требует большой свободной площади около строения. Роется котлован глубиной от 1,5 до 2,5 м для укладки коллектора; температура первичного теплоносителя всегда в пределах от 0°С до +8°С.

ВОДА-ВОДА – технология при которой делается две скважины от 20 до 100м. Одна "подъемная", из нее мы качаем подземную воду с температурным графиком от +6°С до +17°С, а вторая "сбросная", куда сбрасываем тот же объем воды, но с наименьшей температурой (обычно на 4-6°С меньше первичной t°C).

Все чаще мы задумываемся об альтернативных методах получения энергии. Наша планета не бездонная и количество ресурсов с каждым годом становится все меньше.

Вдобавок к этому, цены на энергоресурсы растут, а у нас совершенно нет уверенности в компаниях, поставляющих газ, тепло или свет.

Поэтому рано или поздно каждый задумывается над запасным вариантом, который полностью или частично защитит его от неприятных сюрпризов.

В этой статье мы рассмотрим один из альтернативных видов обогрева — тепловой насос для отопления дома. Это оборудование, которое преобразует бесплатные источники энергии природы в необходимые нам киловатты тепла.

Как работает теплонасос

Современный теплонасос очень похож на банальный холодильник

Что же такое геотермальный насос или, другими словами, теплонасос? Это оборудование, способное перенести тепло от источника к потребителю. Рассмотрим принцип его действия на примере первой практической реализации идеи.

Принцип работы геотермальных насосов стал известен еще в 50-х годах XIX века. На практике эти принципы реализовали только в середине прошлого века.

Однажды, экспериментатор по фамилии Вебер, разбирался с морозилкой и случайно прикоснулся к обжигающей трубе конденсатора. Ему пришла в голову идея, почему тепло уходит в никуда и не приносит никакой пользы? Недолго думая, он удлинил трубу и уложил ее в бак для подогрева воды.

Горячей воды, получившейся в результате этого, стало столько, что он не знал куда ее девать. Нужно было идти дальше — как обогреть с помощью этой нехитрой системы воздух? Решение оказалось очень простым и от этого не менее гениальным.

Читайте также:  Инструкция чтобы сделать рамку для фото

Горячая вода прогоняется по спирали через змеевик, а затем вентилятором теплый воздух раздувается по дому. Все гениальное — просто! Вебер был человеком размеренным, и со временем ему пришла мысль, как обойтись без морозильной камеры. Надо извлекать тепло из земли!

Закопав трубы из меди и накачав их фреоном (тот же газ, который используется в холодильниках) он стал получать тепловую энергию уже из недр. Думаем, что на таком примере каждый поймет принцип работы теплового насоса.

Основные разновидности

Системы отбора тепла. (Для увеличения нажмите)

  • воздух-воздух — это, по сути своей, обычный кондиционер;
  • воздух-вода — добавляем к кондиционеру теплообменник и мы уже греем воду;
  • земля-вода — закапываем коллектор из труб в землю, а на выходе подогреваем воду;
  • вода-вода — трубы размещаются в открытом или подземном водоеме и отдают тепло системе обогрева здания.

(С подробной классификацией тепловых насосов для отопления Вы можете ознакомиться в этой статье).

КПД и СОР

Здесь наглядно показано что ¾ части энергии мы получаем из бесплатных источников. (Для увеличения нажмите)

Для начала определимся в терминах:

  • КПД — коэффициент полезного действия, т.е. сколько полезной энергии получается в процентном соотношении от энергии, затраченной на действие системы;
  • СОР — коэффициент эффективности трансформации (англ. — coefficient of performance).

Такой показатель, как КПД, часто используют в рекламных целях: «КПД нашего насоса 500%!». Вроде и правду говорят — на 1 кВт потраченной энергии (для полноценной работы всех систем и агрегатов) произвели 5 кВт тепловой энергии.

Однако помните, что КПД не бывает выше 100% (этот показатель рассчитывается для замкнутых систем), поэтому логичнее будет использовать показатель COP (применяется для расчетов открытых систем), который показывает коэффициент преобразования использованной энергии в полезную.

Обычно COP измеряется в цифрах от 1 до 7. Чем выше цифра тем более эффективный теплонасос. В примере, приведенном выше (с КПД 500%), COP равняется 5.

Формула для подсчета

Пути потери тепла в доме

Тепловой насос способен полностью справиться с отоплением помещений.

Чтобы выбрать подходящий вам агрегат, следует рассчитать его необходимую мощность.

В первую очередь нужно понимать баланс тепла в здании. Для этих расчетов можно воспользоваться услугами специалистов, онлайн-калькулятором или самостоятельно с помощью несложной формулы:

R=(k x V x T)/860, в которой:

R — потребляемая мощность помещения (кВт/час);
k — средний коэффициент потерь тепла зданием: например, равно 1 — отлично утепленное здание, а 4 — барак из досок;
V — суммарный объем всего отапливаемого помещения, в куб.м.;
T — максимальный перепад температуры между улицей и внутри помещения.
860 — значение, необходимое для перевода получившихся ккал в кВт.

В случае с геотермальным тепловым насосом типа «вода-вода» нужно еще рассчитать необходимую длину контура, который будет находиться в водоеме. Здесь расчет еще проще.

Известно, что 1 метр коллектора дает примерно 30 Вт. Другими словами 1 кВт мощности насоса требует 22 метра труб. Зная требуемую мощность насоса, мы без труда рассчитаем сколько нам нужно труб для изготовления контура.

Расчет на примере системы вода-вода

Рассчитаем для примера дом со следующими исходными данными:

  • отапливаемая площадь 300 кв.м.;
  • высота потолков 2,8 м;
  • здание хорошо утеплено;
  • минимальная температура зимой на улице -25 градусов;
  • комфортная температура в помещении +22 градуса.

В первую очередь высчитываем отапливаемый объем помещения:
300 кв.м. х 2,8 м = 840 куб.м.

Затем вычисляем значение «Т»: 22 — (-25) = 45 градусов.

Подставляем эти данные в формулу:
R=(1 x 840 x 45) / 860 = 43,9 кВт/час

Мы получили требуемую мощность теплового насоса в 44 кВт/час. Без труда определяем, что для его функционирования нам потребуется коллектор общей длиной не менее 968 метров.

Вас также может заинтересовать статья о том, как сделать печь капельницу на солярке своими руками: //6sotok-dom.com/dom/otoplenie/pech-kapelnitsa-svoimi-rukami.html

Т.о. для хорошо утепленного помещения площадью 300 кв.м. подойдет насос с мощностью не менее 44 кВт. Как и везде, лучше сделать запас по мощности хотя бы в 10%. Следовательно, приобретать лучше агрегат на 48-49 кВт.

Рано или поздно мы все придем к использованию альтернативной энергетики и можно сделать первый шаг уже сегодня. Используя тепловые насосы, вы уменьшите свои затраты на отопление, станете независимым от поставщиков газа или угля, сохраните экологию родной планеты.

С помощью этой статьи сможете рассчитать параметры геотермального оборудования, которые подойдут вашему помещению. Но не забывайте, что лучше всего справятся со своей задачей профессионалы. Да и у вас всегда будет с кого спросить, в случае неправильной работы системы.

Смотрите видео, в котором специалист подробно объясняет принципы расчета мощности теплового насоса для отопления дома:

Оставьте первый комментарий

Оставить комментарий

Ваш электронный адрес не будет опубликован.


*