Как происходит индукционный нагрев

Здесь вы узнаете:

Электрическое отопление обладает одним важным преимуществом – повышенной безопасностью. Несмотря на возможность ударов электрическим током и наличие в системе воды, электрические котлы остаются востребованным отопительным оборудованием (при правильном монтаже и подключении они не принесут вреда). В некоторых электрических котлах используется индукционный нагрев, считающийся еще более безопасным. На чем построен такой принцип нагрева и как он используется в отопительном оборудовании?

Что такое индукционный нагрев

В классических электрических котлах, вроде котлов Протерм, стоят самые обычные ТЭНы, погруженные в теплоноситель. На них подается электроэнергия, ТЭНы нагреваются и начинают греть воду в отопительной системе. Такая схема нагрева обладает рядом недостатков:

  • образование накипи – в процессе эксплуатации ТЭНовых котлов на нагревательных элементах образуется накипь, снижающая эффективность работы оборудования;
  • наличие непосредственного контакта с водой – ТЭНы находятся прямо в воде, поэтому электрический пробой может привести к удару током (при отсутствии нормального заземления);
  • низкая надежность нагревательных элементов – несмотря на наличие особо стойких ТЭНов, в подавляющем большинстве котлов стоят старые ТЭНы, не отличающиеся надежностью.

Индукционный нагрев воды позволяет избавиться от вышеуказанных недостатков. Отопительное оборудование получается более сложным, но и более эффективным и надежным.

Нагревательным элементом в таких котлах является катушка.

Схема индукционного нагрева в электрических отопительных котлах предусматривает наличие следующих элементов – это управляющая и генерирующая электроника, индукторы и труба с теплоносителем. Именно из этих элементов состоит простой индукционный котел (схематически). Теплоноситель поступает в трубу, проходящую через индукторы, нагревается до определенной температуры и отправляется обратно в отопительную систему.

В чем заключаются преимущества индукционного нагрева?

  • Отсутствует образование накипи – здесь нет прямого контакта нагревательного элемента с теплоносителем, поэтому накипь здесь действительно отсутствует.
  • Долговечность оборудования – сам процесс происходит за счет токов высокой частоты, генерируемых электроникой. Несмотря на повышенную сложность оборудования, оно является весьма надежным.
  • Минимум протечек – теплоноситель протекает по цельной трубе, проходящей через индукторы. Поэтому протечки возможны разве что за пределами индукционных котлов, но никак не в них.
  • Возможность длительной работы в самом интенсивном режиме – подобный принцип работы делает электрические котлы необычайно выносливыми.

Индукционный нагрев зарекомендовал себя с наилучшей стороны, но полностью заменить ТЭНовые котлы пока не получается – сказывается высокая стоимость оборудования и его громоздкость. Зато вы сможете сделать индукционный котел самостоятельно.

Принцип индукционного нагрева

Данная технология широко применяется в металлургической промышленности.

Индукционному нагреву более 100 лет, поэтому его нельзя назвать новинкой. Он применяется во многих сферах, особенно в промышленных. Установки индукционного нагрева активно используются в металлообрабатывающих цехах. Ранее для плавки металлов использовался уголь или природный газ, теперь же этим занимаются токи высокой частоты. Такая технология в отношении металлов позволяет минимизировать габариты печей и добиться их высокой производительности.

Как вообще работает индукционный нагрев? Принцип действия нагревателей очень прост – нагрев ведется за счет генерации токов высокой частоты, питающих индукторы. Сами индукторы представляют собой мощные катушки, внутри которых создается переменное магнитное поле. Катушки не имеют сердечников – вместо них здесь работают разогреваемые материалы. Например, индукционная печь для плавки металлов представляет собой большую катушку, внутрь которой помещаются металлические заготовки для дальнейшей обработки.

Включение генератора приводит к созданию мощных вихревых потоков магнитной индукции, в результате чего размещенные внутри индукторов металлы начинают разогреваться. Что касается отопительных котлов, то здесь сердечником индуктора является металлическая труба, через которую протекает теплоноситель – под воздействием вихревых токов труба и теплоноситель разогреваются, отправляя тепло в отопительную систему.

Проходя через катушку, теплоноситель нагревается и передает тепло в радиаторы отопления.

Технология индукционного нагрева чрезвычайно проста и эффективна. На ее основе создаются современные отопительные котлы, не требующие частого обслуживания и обладающие продолжительным сроком службы. Правда, их достоинства принято завышать, из-за чего у людей создается масса ложных впечатлений. Вот несколько примеров.

  • Продавцы нередко говорят об экономичности котлов с индукционным нагревом – отчасти это так, но экономия вряд ли превысит несколько процентов. В то же время бренды говорят об экономичности до 20-30%.
  • Быстрота нагрева – индукционные котлы нагревают теплоноситель чуть быстрее ТЭНовых аналогов. Но эту скорость нельзя назвать революционной.
  • Новизна технологии – как мы уже говорили, данная технология известен уже более сотни лет.

Отопление основанное на этой технологии радует продолжительным сроком службы, отсутствием необходимости в дополнительном обслуживании и отсутствием накипи – в этом отношении они готовы соревноваться с любыми другими электрическими котлами.

Индукционный нагрев (Induction Heating) — метод бесконтактного нагрева токами высокой частоты (англ. RFH — radio-frequency heating, нагрев волнами радиочастотного диапазона) электропроводящих материалов.

Читайте также:  Как правильно нарисовать дизайн комнаты

Индукционный нагрев — это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Следовательно — это нагрев изделий из проводящих материалов (проводников) магнитным полем индукторов (источников переменного магнитного поля). Индукционный нагрев проводится следующим образом. Электропроводящая (металлическая, графитовая) заготовка помещается в так называемый индуктор, представляющий собой один или несколько витков провода (чаще всего медного). В индукторе с помощью специального генератора наводятся мощные токи различной частоты (от десятка Гц до нескольких МГц), в результате чего вокруг индуктора возникает электромагнитное поле. Электромагнитное поле наводит в заготовке вихревые токи. Вихревые токи разогревают заготовку под действием джоулева тепла (см. закон Джоуля-Ленца).

Система «индуктор-заготовка» представляет собой бессердечниковый трансформатор, в котором индуктор является первичной обмоткой. Заготовка является вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху.

На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки Δ (Поверхностный-эффект), в результате чего их плотность резко возрастает, и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое Δ плотность тока уменьшается в e раз относительно плотности тока на поверхности заготовки, при этом в скин-слое выделяется 86,4 % тепла (от общего тепловыделения. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относительной магнитной проницаемости μ материала заготовки.

Для железа, кобальта, никеля и магнитных сплавов при температуре ниже точки Кюри μ имеет величину от нескольких сотен до десятков тысяч. Для остальных материалов (расплавы, цветные металлы, жидкие легкоплавкие эвтектики, графит, электролиты, электропроводящая керамика и т. д.) μ примерно равна единице.

Например, при частоте 2 МГц глубина скин-слоя для меди около 0,25 мм, для железа ≈ 0,001 мм.

Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием — этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.

Применение:
Сверхчистая бесконтактная плавка, пайка и сварка металла.
Получение опытных образцов сплавов.
Гибка и термообработка деталей машин.
Ювелирное дело.
Обработка мелких деталей, которые могут повредиться при газопламенном или дуговом нагреве.
Поверхностная закалка.
Закалка и термообработка деталей сложной формы.
Обеззараживание медицинского инструмента.

Высокоскоростной разогрев или плавление любого электропроводящего материала.

Возможен нагрев в атмосфере защитного газа, в окислительной (или восстановительной) среде, в непроводящей жидкости, в вакууме.

Нагрев через стенки защитной камеры, изготовленной из стекла, цемента, пластмасс, дерева — эти материалы очень слабо поглощают электромагнитное излучение и остаются холодными при работе установки. Нагревается только электропроводящий материал — металл (в том числе расплавленный), углерод, проводящая керамика, электролиты, жидкие металлы и т. п.

За счёт возникающих МГД усилий происходит интенсивное перемешивание жидкого металла, вплоть до удержания его в подвешенном состоянии в воздухе или защитном газе — так получают сверхчистые сплавы в небольших количествах (левитационная плавка, плавка в электромагнитном тигле).

Поскольку разогрев ведётся посредством электромагнитного излучения, отсутствует загрязнение заготовки продуктами горения факела в случае газопламенного нагрева, или материалом электрода в случае дугового нагрева. Помещение образцов в атмосферу инертного газа и высокая скорость нагрева позволят ликвидировать окалинообразование.

Удобство эксплуатации за счёт небольшого размера индуктора.

Индуктор можно изготовить особой формы — это позволит равномерно прогревать по всей поверхности детали сложной конфигурации, не приводя к их короблению или локальному непрогреву.

Легко провести местный и избирательный нагрев.

Так как наиболее интенсивно разогрев идет в тонких верхних слоях заготовки, а нижележащие слои прогреваются более мягко за счёт теплопроводности, метод является идеальным для проведения поверхностной закалки деталей (сердцевина при этом остаётся вязкой).

Лёгкая автоматизация оборудования — циклов нагрева и охлаждения, регулировка и удерживание температуры, подача и съём заготовок.

Установки индукционного нагрева:

На установках с рабочей частотой до 300 кГц используют инверторы на IGBT-сборках или MOSFET-транзисторах. Такие установки предназначены для разогрева крупных деталей. Для разогрева мелких деталей используются высокие частоты (до 5 МГц, диапазон средних и коротких волн), установки высокой частоты строятся на электронных лампах.

Также для разогрева мелких деталей строятся установки повышенной частоты на MOSFET-транзисторах на рабочие частоты до 1,7 МГц. Управление транзисторами и их защита на повышенных частотах представляет определённые трудности, поэтому установки повышенной частоты пока ещё достаточно дороги.

Индуктор для нагрева мелких деталей имеет небольшие размеры и небольшую индуктивность, что приводит к уменьшению добротности рабочего колебательного контура на низких частотах и снижению КПД, а также представляет опасность для задающего генератора (добротность колебательного контура пропорциональна L/C, колебательный контур с низкой добротностью слишком хорошо «накачивается» энергией, образует короткое замыкание по индуктору и выводит из строя задающий генератор). Для повышения добротности колебательного контура используют два пути:
— повышение рабочей частоты, что приводит к усложнению и удорожанию установки;
— применение ферромагнитных вставок в индукторе; обклеивание индуктора панельками из ферромагнитного материала.

Читайте также:  Интерьер прямой кухни фото

Так как наиболее эффективно индуктор работает на высоких частотах, промышленное применение индукционный нагрев получил после разработки и начала производства мощных генераторных ламп. До первой мировой войны индукционный нагрев имел ограниченное применение. В качестве генераторов тогда использовали машинные генераторы повышенной частоты (работы В. П. Вологдина) или искровые разрядные установки.

Схема генератора может быть в принципе любой (мультивибратор, RC-генератор, генератор с независимым возбуждением, различные релаксационные генераторы), работающей на нагрузку в виде катушки-индуктора и обладающей достаточной мощностью. Необходимо также, чтобы частота колебаний была достаточно высока.

Например, чтобы «перерезать» за несколько секунд стальную проволоку диаметром 4 мм, необходима колебательная мощность не менее 2 кВт при частоте не менее 300 кГц.

Выбирают схему по следующим критериям: надёжность; стабильность колебаний; стабильность выделяемой в заготовке мощности; простота изготовления; удобство настройки; минимальное количество деталей для уменьшения стоимости; применение деталей, в сумме дающих уменьшение массы и габаритов, и др.

На протяжении многих десятилетий в качестве генератора высокочастотных колебаний применялась индуктивная трёхточка (генератор Хартли, генератор с автотрансформаторной обратной связью, схема на индуктивном делителе контурного напряжения). Это самовозбуждающаяся схема параллельного питания анода и частотно-избирательной цепью, выполненной на колебательном контуре. Она успешно использовалась и продолжает использоваться в лабораториях, ювелирных мастерских, на промышленных предприятиях, а также в любительской практике. К примеру, во время второй мировой войны на таких установках проводили поверхностную закалку катков танка Т-34.

Недостатки трёх точки:

Низкий кпд (менее 40 % при применении лампы).

Сильное отклонение частоты в момент нагрева заготовок из магнитных материалов выше точки Кюри (≈700С) (изменяется μ), что изменяет глубину скин-слоя и непредсказуемо изменяет режим термообработки. При термообработке ответственных деталей это может быть недопустимо. Также мощные твч-установки должны работать в узком диапазоне разрешённых Россвязьохранкультурой частот, поскольку при плохом экранировании являются фактически радиопередатчиками и могут оказывать помехи телерадиовещанию, береговым и спасательным службам.

При смене заготовок (например, более мелкой на более крупную) изменяется индуктивность системы индуктор-заготовка, что также приводит к изменению частоты и глубины скин-слоя.

При смене одновитковых индукторов на многовитковые, на более крупные или более малогабаритные частота также изменяется.

Под руководством Бабата, Лозинского и других учёных были разработаны двух- и трёхконтурные схемы генераторов, имеющих более высокий кпд (до 70 %), а также лучше удерживающие рабочую частоту. Принцип их действия состоит в следующем. За счёт применения связанных контуров и ослабления связи между ними, изменение индуктивности рабочего контура не влечёт сильного изменения частоты частотозадающего контура. По такому же принципу конструируются радиопередатчики.

Недостаток многоконтурных систем — повышенная сложность и возникновение паразитных колебаний УКВ-диапазона, которые бесполезно рассеивают мощность и выводят из строя элементы установки. Также такие установки склонны к затягиванию колебаний — самопроизвольному переходу генератора с одной из резонансных частот на другую.

Современные твч-генераторы — это инверторы на IGBT-сборках или мощных MOSFET-транзисторах, обычно выполненные по схеме мост или полумост. Работают на частотах до 500 кГц. Затворы транзисторов открываются с помощью микроконтроллерной системы управления. Система управления в зависимости от поставленной задачи позволяет автоматически удерживать

а) постоянную частоту
б) постоянную мощность, выделяемую в заготовке
в) максимально высокий КПД.

Например, при нагреве магнитного материала выше точки Кюри толщина скин-слоя резко увеличивается, плотность тока падает, и заготовка начинает греться хуже. Также пропадают магнитные свойства материала и прекращается процесс перемагничивания — заготовка начинает греться хуже, сопротивление нагрузки скачкообразно уменьшается — это может привести к "разносу" генератора и выходу его из строя. Система управления отслеживает переход через точку Кюри и автоматически повышает частоту при скачкообразном уменьшении нагрузки (либо уменьшает мощность).

Индуктор по возможности необходимо располагать как можно ближе к заготовке. Это не только увеличивает плотность электромагнитного поля вблизи заготовки (пропорционально квадрату расстояния), но и увеличивает коэффициент мощности Cos(φ).

Увеличение частоты резко уменьшает коэффициент мощности (пропорционально кубу частоты).

При нагреве магнитных материалов дополнительное тепло также выделяется за счет перемагничивания, их нагрев до точки Кюри идет намного эффективнее.

При расчёте индуктора необходимо учитывать индуктивность подводящих к индуктору шин, которая может быть намного больше индуктивности самого индуктора (если индуктор выполнен в виде одного витка небольшого диаметра или даже части витка — дуги).

Имеются два случая резонанса в колебательных контурах: резонанс напряжений и резонанс токов.
Параллельный колебательный контур – резонанс токов.
В этом случае на катушке и на конденсаторе напряжение такое же, как у генератора. При резонансе, сопротивление контура между точками разветвления становится максимальным, а ток (I общ) через сопротивление нагрузки Rн будет минимальным (ток внутри контура I-1л и I-2с больше чем ток генератора).

Читайте также:  Как отмыть фильтры вытяжки от жира

В идеальном случае полное сопротивление контура равно бесконечности — схема не потребляет тока от источника. При изменение частоты генератора в любую сторону от резонансной частоты полное сопротивление контура уменьшается и линейный ток (I общ) возрастает.

Последовательный колебательный контур – резонанс напряжений.

Главной чертой последовательного резонансного контура является то, что его полное сопротивление минимально при резонансе. (ZL + ZC – минимум). При настройке частоты на величину, превышающую или лежащую ниже резонансной частоты, полное сопротивление возрастает.
Вывод:
В параллельном контуре при резонансе ток через выводы контура равен 0, а напряжение максимально.
В последовательном контуре наоборот — напряжение стремится к нулю, а ток максимален.

Индукционный нагрев — это процесс, который используется для нагрева металлов или иных проводящих материалов. Для многих современных производственных процессов индукционный нагрев предлагает достаточное сочетание скорости, последовательности и контроля процесса.

Основные принципы индукционного нагрева применяются с 1920 года. Во время второй мировой войны технология быстро развивается в связи с военными потребностями для быстрого и надежного процесса упрочнения металлических частей двигателей.

В наиболее распространенных методах используется факел или открытое пламя непосредственно применяемое к металлической части. Но при индукционном нагреве тепло фактически «индуцируется» в пределах циркулирующего электрического тока.

Индукционный нагрев опирается на уникальные характеристики радиочастотной энергии – это часть электромагнитного спектра ниже инфракрасной и микроволновой энергии. Так как тепло передается в продукт через электромагнитные волны, оно никогда не вступает в непосредственный контакт с пламенем. При этом нет никакого загрязнения продукта, а этот процесс становится очень повторяемым и контролируемым.

Как работает индукционный нагрев

Как происходит индукционный нагрев?

Когда к трансформатору прикладывается переменный электрический ток, создается переменное магнитное поле. Согласно закону Фарадея, если вторичная обмотка трансформатора находится в магнитном поле, будет индуцирован электрический ток.

Индуктор представляет из себя трансформатор. Когда металлическая часть помещается в индуктор циркулирующие вихревые токи индуцируются в пределах детали.

Дополнительное тепло производится в магнитных частях через гистерезис – внутренние трения, которые создаются, когда магнитный материал проходит через индуктор. Материал для разогревания может быть расположен в условиях изоляции от источника питания, погружен в жидкости, охватываемые изолированные вещества в газообразных средах или даже в вакууме.

Эффективность индукционной системы нагрева зависит от нескольких факторов: конструкции индуктора, емкости блока питания, количества необходимого изменения температуры.

Характеристики нагреваемого материала

МЕТАЛЛ ИЛИ ПЛАСТИК

Во-первых, индукционным нагревом подлежат только проводящие материалы, обычно металлы. Пластмассы и других непроводящие материалы могут быть нагреты только косвенно через токопроводящие металлы находящиеся вместе с пластиком.

МАГНИТНЫЕ И НЕМАГНИТНЫЕ

Нагрев лучше у магнитных материалов. Для тепла, вызванного вихревыми токами магнитные материалы производят тепло через эффект гистерезиса. Этот эффект прекращается при температурах выше точки «Кюри» – температура, при которой магнитный материал теряет свои магнитные свойства. Относительная устойчивость магнитных материалов оценивается по шкале «проницаемостью» от 100 до 500. Хотя не магнетные материалы имеют проницаемость 1, магнитные материалы могут иметь проницаемость до 500.

ТОЛСТЫЕ ИЛИ ТОНКИЕ

На проводящих материалах около 85% эффекта нагрева происходит на поверхности материала. Интенсивность нагрева уменьшается, как расстояние от поверхности увеличивается. Так малые или тонкие части обычно греются быстрее, чем большие и толстые части, особенно если большие части необходимо нагреть полностью.

Исследования показали связь между частотой и глубиной проникновения: чем выше частота, тем меньшая глубина. Частота от 100 до 400 кГц сравнительно высоких энергий идеально подходит для быстрого разогрева мелких деталей или поверхности больших частей. Для глубокого проникновения тепла необходимы более низкие частоты от 5 до 30 кГц.

Если использовать точно такой же процесс индукции и того же размера деталь из стали и меди, результаты будут совершенно разные. Почему? Сталь – наряду с углеродом, оловом и вольфрамом – имеет высокое удельное сопротивление. Потому что металлы противостоят текущему потоку. Металлы с низким удельным сопротивлением: медь, латунь и алюминий нагреются лучше. Удельное сопротивление увеличивается с температурой, поэтому очень горячий кусок стали будет более восприимчив к индукционному нагреву чем холодной кусок.

Дизайн индуктора

Дизайн и конструкция индуктора является одним из наиболее важных аспектов системы в целом. Хорошо продуманная конструкция обеспечивает надлежащее нагревание и максимизирует эффективность индукционного нагрева.

Степень изменения температуры

Наконец эффективность индукционного нагрева для конкретной детали зависит от количества необходимых изменений температуры. Для широкого спектра изменений температуры требуется больше индукционного нагрева питания.

Оставьте первый комментарий

Оставить комментарий

Ваш электронный адрес не будет опубликован.


*